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Abstract—GPU has a good performance ratio and exhibits
the capability for applications with high level of parallelism
despite its inexpensive price. The support of integer and logical
instructions on the latest generation of GPU makes us to
implement cipher algorithms easier with the same instructions.
However the decisions such as parallel processing granularity
or memory allocation place imposed heavy burden on program-
mers. For this reason this paper shows the results of several
experiments to study relation between memory allocation style
of AES parameters and granularity as the parallelism ex-
ploited from AES encoding process using CUDA with NVIDIA
Geforce GTX285. The result of experiments cleared up that
the 16Byte/thread granularity had the highest performance
and it achieved approximately 35Gbps throughput. Moreover,
implementation with overlapping between processing and data
transfer brought up 22.5Gbps throughput including data trans-
fer time. Also, it cleared up that it is important to decide

granularity and memory allocation to effective processing in
AES encryption on GPU.
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I. INTRODUCTION

GPU(Graphics Processing Unit) is a hardware specialized

in 3D graphics processing. At the time of DirectX 9, 16-

bit floating point format has been contrived as dynamic

range to record enormous amount of data like real world.

After that, GPU has advanced by adopting powerful 16-

bit floating point architecture. The research to apply this

GPU’s powerful computational ability with general purpose

computing has become popular since 2004. However, only

fluid calculation or Newtonian N-body problem have ben-

efited from GPU and it was very hard to implement other

applications on GPU.

In response to this situation NVIDIA that is a GPU vendor

has developed and released so-called “CUDA”(Compute

Unified Device Architecture)[1]. Integer and logical instruc-

tion have newly been supported for GPGPU and make it

easier to implement applications using these operations[2].

In addition, C-like programming language has become avail-

able, so programmers have been able to utilize GPU’s

computing power with relatively easy use[3]. In this way,

GPGPU has continued to advance as the good cost-

performance environment and has been noticed from various

research fields[4].

After CUDA was released, programmers was able to

certainly code easily. Nevertheless, programmers still have

to consider many factors to exploit the power. In particular,

there is an absolute fact that programmers have to make

decisions of several parameters such as memory allocation

or how to assign computations to threads.

For this reason, we implemented a variety of AES encod-

ing with different combination of memory allocation style

and parallel processing granularity. Using these results of

experiments this paper discuss the effectiveness for per-

formance about difference of memory allocation method ,

computation granularity and more.

II. CUDA

CUDA is a GPGPU development environment released

by NVIDIA. Programmers write a thread program and are

supposed to specify the number of threads and thread blocks

arbitrarily. From the point of view of hardware, quite a lot

of processors and on-chip memory have been assembled and

thread parallelism allows the processors not to be kept idle.

A. Hardware Model

Fig. 1 illustrates the CUDA architecture. GPU chip has

N multiprocessors(MP) and each MP has M scalar proces-

sors(SP), 16KB shared memory, and several 32-bit registers.

On the whole, the chip constitutes a hierarchical SIMD

architecture. Cutting control unit such as conditional branch

component from a instruction unit allows computing unit

density to increase.

Also, GPU has a large global memory which is also called

Video RAM. GPU’s memory access system is composed of

the same hierarchical structure as the processor’s structure.

For this reason, threads can access the closer memory to

their own location and the whole latency is hidden.

In addition, there is constant memory per MP that can

have almost same latency as shared memory in the case of

cache references to constant memory. In other word, data

itself is located in global memory, but if cache reference

happens the entity is cashed into constant cache.

In this paper, we used NVIDIA Geforce GTX285, which

is equipped with 30 MPs, 8 SPs per MP, 16384 registers per

MP, and a 1GB global memory.
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Figure 1. CUDA Architecture.

B. Software Model

For corresponding to the hardware model, thread is also

composed of hierarchical SIMD architecture. The mass

of thread is called thread block and programmers specify

several number of thread blocks normally when a job is

issued from CPU to GPU. While each thread is carried out

on a SP one more thread block is assigned to a MP. MP

resources such as shared memory and registers are evenly

divided by the number of thread blocks. Each thread is

carried out on a SP. Local variables in thread program are

assigned to registers in MP.

In addition, thread assignments in MP are always executed

by 32 threads and these threads are executed at the same

time. This unique definition is called “warp” in CUDA as

shown in Figure2. A warp is, what is called, a common

destiny.

Figure 2. Warp execution in CUDA.

C. Memory access system for high memory bandwidth

While the calculation unit is 32 threads, memory access

unit is 16 threads in CUDA[3].

1) Coalesced Access of global memory: Memory access

cycle to global memory takes between 400 and 600 cycles

and this latency is fairly low for the access speed in GPU.

On the other hand, the interface between global memory

and SP is by far more broad than CPU. To exploit this

characteristic, memory access of global memory is hidden

by issuing coalesced memory access instruction if thread

access would access data with basically no stride access.

CUDA compiler is in charge of whether global memory

access become coalesced.

To cover this weak point, the interface between global

memory and SPs is by far broader than general CPU and if

threads will access with basically no stride access the CUDA

compiler generates the coalesced load or store instructions

at the time of compile.

2) Shared memory interleave and the avoidance of bank

Conflict: Memory access to shared memory is as low latency

as registers. Shared memory is divided into 16 banks(4-byte

per bank). In the case of access to different bank by each

thread, threads can load or store data in parallel. However,

if each thread will access the same bank the memory access

induces in serial. At the time the latency will be 16 times

different at the maximum by how to allocate data on shared

memory.

III. AES

AES is a symmetric block cipher which was introduced

in 2001 by NIST[5]. AES encrypts and decrypts plaintext

and ciphertext blocks using a key size of 128-bit, 192-bit

or 256-bit, and the calculation unit based on encryption is 1

byte. This cipher executes the iteration of the same round,

which number of iterations is different from the key size. In

this paper we selected only 128-bit version, which consists

of 10 rounds. Each round consists of four transformations

- SubBytes, ShiftRows, MixColumns, and AddRoundKey.

The final round is slightly different from other rounds and

don’t include MixColumns.

Our implementation based on optimized ANSI C source

code for AES which is provided as a part of OpenSSL the

open source toolkit for SSL/TLS[6]. Its algorithm defines

round processes combined into a transformation using look

up table called “T-box” and ex-or operation simply. Let a be

round input which is divided into each 32bits, round output

e is represented as follows:

ej = T0[a0,j]⊕T1[a1,j+1]⊕T2[a2,j+2]⊕T3[a3,j+3]⊕kj (1)

where T0, T1, T2, T3 are lookup table and kj is the j-th

column of a roundkey. This algorithm contains only 4 look

up table transformations and 4 ex-or operations.
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Furthermore, AES has some modes - ECB(Electric Code

Book), CBC(Cipher Block Chaining), and so on. We se-

lected ECB mode because this can exploit GPU’s powerful

parallel processing power easily.

IV. RELATED WORKS

Cook et al. achieved AES encryption at 1.53Mbps

throughput using Open GL on NVIDIA Geforce3 Ti200[7].

However its performance potentials only 2.3% of CPU

(Pentium IV 1.8GHz) performance because of earlier GPU

architecture didn’t have enough instruction set for general

purpose computing. Also Harrison et al achieved AES

encryption at 870.8 Mbps throughput on Geforce 7900GT

using Direct X9[8].

Manavski implemented CUDA-AES and achieved as-

tounding 8.28Gbps throughput rate with an input size of

8MB using NVIDIA Geforce 8800GTX[9]. Authors of this

paper insist that the thread block size leads to the fastest im-

plementation in CUDA-AES, and performance improvement

can be observed as the number of thread block increases.

Furthermore, authors of this paper note that the effort to

reduce the usage of the shared memory is needed for more

performance in CUDA-AES because the shared memory is

divided into equally-sized memory modules at the time of

AES encryption process. However, if bank conflict happens

the access has to be serialized and causes slow down of

the performance. But there aren’t no argument on concrete

allocation of shared memory.

Di Biagio et al. also implemented counter mode

AES (AES-CTR) with CUDA using NVIDIA Geforce

8800GT[10]. Authors of this paper achieved 12.5Gbps

throughput rate with an input size of 128MB considering

about processing granularity. They defined as fine-grained

design a solution exposing the internal parallelism of each

AES rounds. They proposed four 32-bit words blocks dis-

patch each threads as a fine-grain processing. Moreover,

coarse-grained design was defined exploiting higher-level

parallelism between independent plaintext blocks which

works each threads processing for each 128-bit plaintext

blocks.

Nishikawa el. al. also discussed granularity in [11]. They

defined one thread processing one plaintext block (which

contains 16Bytes) as 16Bytes/thread and also other granular-

ities such as 4Bytes/thread and 1Bytes/thread their definition

similar to 16Bytes/thread. They implemented an AES-ECB

encoding according to standard AES algorithm without T-

Box which achieved 2.45Gbps with Geforce GTX285. And

also they proposed DES implementation on GTX285 which

aimed at brute force attack[12].

Table I shows peak performances and implementation

environments of these previous works. This paper discusses

more detailed implementation of AES referred these pre-

vious works respectively and try to bring out more AES

performance using GTX285.

Table I
PERFORMANCE OF PREVIOUS WORKS.

Reference Device Language Throughput

Cook et. al.[7] Geforce3 Ti200 OpenGL 1.53Mbps

Harrison et. al.[8] Geforce 7900GT DirectX9 870.8Mbps

Manavski [9] Geforce8800GTX CUDA 8.28Gbps

Di Biagio et. al.[10] Geforce8800GT CUDA 12.5Gbps

Nishikawa et. al.[11] Geforce GTX285 CUDA 6.25Gbps

V. AES ENCRYPTION IMPLEMENTATION ON CUDA GPU

This section discusses about a design on parallel AES

ECB encoding program.

A. Granularity of parallel processing

1) 16Bytes/thread: 16Bytes/thread means an paralleling

method that each thread is mapped to each plaintext block

consisting of 16bytes. This implementation has an advantage

that this method requires no synchronization and no shared

data between threads because of the encryption process of

a plaintext block does not need to process plaintext block

in parallel.This granularity uses a parallelism of between

plaintext blocks only.

2) 8Bytes/thread and 4Bytes/thread: 8Bytes/thread gran-

ularity processes one plaintext block with two threads. Con-

currently, this method exploits parallelism between plaintext

blocks. This method needs shared memory to share interme-

diate data by two threads and also needs synchronization.

4Bytes/thread granularity processes one plaintext block with

4 threads. This method is different from 8Bytes/thread in its

number of threads for a block sharing. This method requires

shared memory and synchronization in the same reason with

8Bytes/thread.

3) 1Byte/thread: It is absolutely better to process AES

encoding with 32bit operating unit at least because of AES

encoding algorithm using this study is optimized for 32bit

processing. However, it is able to process 1Byte data using

a thread respectively because of AES was designed with

8bit operation unit. 1Byte/thread means that 16threads are

required to process a plaintext block. This granularity is de-

signed to compare earlier study and also other granularities

although this granularity will bring not good performance

for GPU which has 32bit operation unit.

B. Memory Allocation

1) Key and T-box: T-box and round keys are read-only

data and they are able to be shared between all threads.

According to such behavior, these valuables match to al-

locate on constant memory. Even if they ware allocated

on shared memory, AES would indicate good performance

because of shared memory provided low latency access

absolutely guaranteed too. But allocating them on shared

memory wastes its capacity because shared memory is able

to be shared between threads belonging in the thread blocks.
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2) Plaintext: Plaintext is stored on global memory at

first. When AES encoding is started, plaintext is loaded

on shared memory sequentially to share intermediate data

between stream processors excepted at 16Byte/thread gran-

ularity because of this granularity allocate all plaintext and

intermediate values allocate on registers. We implemented

two types of memory allocation patterns. As shown in Fig. 3

and Fig. 4, we can select two options about how to allocate

data on memory - Array of Structure(AoS) and Structure

of Array(SoA). AoS deals with plaintext as the way it is,

and SoA allocates each element of plaintext into one array.

They provide difference of appearance of bank conflict. To

reduce bank conflict occurrences, we select better allocation

pattern for each implementations. Fig. 3 and Fig. 4 also show

examples of thread access pattern to shared memory in case

of granularity at 8Bytes/thread.

Figure 3. Array of Structure, an allocation of plaintext.

Figure 4. Structure of Array, an allocation of plaintext.

C. T-box duplication

T-box consists of 256 entries of 32bit data. Each AES

round requires four T-box transformations and T-boxes for

these transformations are provided from shift operation

applying one T-box. Another way of providing these four

T-box transformations is using pre-computed four T-boxes.

Pre-computed four T-boxes require four times much memory

space than single T-box.

D. Cutdown of thread block switching

In usual CUDA applications, for massively parallel pro-

cessing data is respectively mapped to each thread. For

example in 3D rendering, each pixel or vertex are relatively

mapped to each thread. In fluid computation, each particle

are mapped to each thread. Similarly in AES, we can map

each plaintext to each thread just like above applications, but

the time of one encryption by threads is differently slight.

Therefore, the overhead of switching thread block in AES

tends to be bigger and unignorable than other applications.

For this reason, after threads finished encrypting plaintexts

in charge, their threads returns to the starting point and

continues to encrypt other plaintexts again. If doing so, only

low number of threads can encrypt quite a few of plaintexts,

and we can avoid the overhead of switching thread blocks

in AES.

E. Overlapping GPU processing and memory copy

There is need to consider about overhead by data transfer

between CPU and accelerator such as GPU to exploit ef-

fective performance. To hide this overhead, CUDA provides

overlapping data transfer (memory copy) and processing. We

implemented AES encoding process with overlapping trans-

ferring plaintext to (and ciphertext from) global memory of

GPU and GPU’s AES process. Fig 5 shows this overlapping.

Figure 5. Overlapping data transfer and processing.

VI. EXPERIMENTAL RESULTS

A. Environment

Table II shows the specification of our computer system

for this experiment.

Table II
SPECIFICATION OF COMPUTER.

CPU Corei7 Quadi7-920(2.66GHz)

Memory 6GB

OS CentOS5.3
(kernel ver2.6.18)

Compiler gcc ver4.1.2(option -O3)

GPU Accelerator NVIDIA Geforce GTX 285

GPU Memory 1GB

CUDA Compiler nvcc ver2.3

Implemented AES is 128-bit AES encoding algorithm

(ECB mode). Round key is generated by CPU once and
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transferred to GPU’s global memory. Plain text which is

made with random value is generated by CPU too. A

size of plaintext is 256MB fixed size to evaluate around

peak performance each implementations. Number of thread

blocks is 60 and number of threads is 512 fixed of all

execution.

B. Throughput

Table III shows the throughput of each implementations.

At first basically conditions of each implementations are

shown, because of table III contains selected data from con-

ditions led from discussion of section V. All results shown

in table III applied 4 T-boxes implementation. Preliminary

experience indicated 4 T-boxes implementation achieved

better performance than one T-box implementation because

of less computation than one T-box. Moreover, requiring

memory space for 4 T-boxes didn’t effect for performance.

About plain text allocation, excepted 16Bytes/thread and

1Byte/thread, both AoS and SoA implementation ware eval-

uated. In case of computation granularity at 16Bytes/thread,

shared memory for plaintext did not required because of

registers ware able to replace shared memory. Allocating

plaintext at registers achieved higher performance than allo-

cating plaintext at shared memory because of it brought in

not only no memory access conflict but also no computation

for memory address computation.

As a result, one of 16Bytes/thread implementation

achieved the highest 35.2 Gbps throughput. 16Byte/thread

had constitute advantage compared with other implementa-

tions that they need no shared memory for processing AES

encoding and also no synchronization. Requiring no shared

memory means bringing in not only high speed register

access but also no memory bank conflict.

About allocating place of T-box, allocating at constant

memory provided critical decrees in performance. Constant

memory will give high speed access with coherent mem-

ory access because constant memory equips cache system.

However T-box transformation provided random access, but

shared memory is able to adopt to require random memory

access.

According to these experimental results, it is better to

process T-box transformations using shared memory and

other granularity implementations in table III didn’t accept

allocating T-box on constant memory.

About allocating place of round keys, there was a small

deference for performance. Allocating round keys on shared

memory was about 2% faster than allocating it on constant

memory. Round key access required coherent memory ac-

cess, that’s why they have almost same throughput.

Next, let us discuss about 8Bytes/thread and

4Bytes/thread. The highest throughput was 26.9Gbps

but they had almost same throughput. Their throughput are

almost 30% lower than 16Bytes/thread implementations.

8 and 4Bytes/threads required shared memory to share

plaintexts and intermediates. But shared memory access

brings on bank conflicts. Synchronizations, shared memory

access and bank conflicts are major causes of this decrease

in performance.

At these granularity, allocating round keys on constant

memory led better performance than allocating shared mem-

ory which is contrary result compared with 16Bytes/thread

result. The reason of this difference was bank conflicts which

increases when 4 and 8Bytes/thread used shared memory

to store plaintext and intermediate data. To allocate round

keys on constant memory led lower bank conflicts than using

shared memory for round keys.

AoS plaintext allocation implementation provided about

1.5 times better performance than SoA implementation at

4byte/thread granularity. SoA implementation occurred 2

times more bank conflicts than AoS implementation because

of this implementation provided 4-way bank conflict. AoS

implementation, on the other hand, would provide no bank

conflict without T-Box transformation. In the other case of

8Bytes/thread, difference of performance between SoA and

AoS implementation was close. AoS implementation was 1.2

times faster than SoA implementation because of memory

access patten between threads was not so different by each

implementations.

Finally 1Byte/thread achieved very low throughput but

it was no surprises because implemented algorithm was de-

signed using 8bit operation which was made from algorithm

optimized to 32bit operation divided into four operations.

Results at this granularity showed different behavior from

4, 8Bytes/thread. Allocating round keys on constant memory

was not valid to performance.

Considering number of thread blocks and treads is very

important. All of this experiments ware done in condition

under a number of thread blocks and threads ware fixed.

Fact that these parameters effect to performance is well

known[10] , but the case of evaluating around peak perfor-

mance it is better to set large number of threads. Actually,

our experiments indicated that the case of setting 512 threads

per block achieved almost best performance. Although 256

threads per thread block achieved the best performance in

some case, differences against 512 threads per block ware

around 0.1% to 0.4%.

C. Overlapping Data transfer

Performances shown up to here are excepted data transfer

time to discuss effectiveness about difference of granular-

ity and so on. To evaluate real effectiveness provided by

GPU, discussion data transfer overheads between CPU and

GPGPU is important.

Our implementation results ware evaluated with AES

plaintext size at 256MB. From measurement of data transfer

time, there is about 0.08ms overhead which includes both

copy to/from global memory from/to CPU. Throughput

including this data transfer time at 16Bytes/thread(T-box on
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Table III
THROUGHPUT OF EACH IMPLEMENTATION.

Granularity 16B/th 16B/th 16B/th 8B/th 8B/th 8B/th 4B/th 4B/th 4B/th 1B/th 1B/th

T-box constant shared shared shared shared shared shared shared shared shared shared

Key constant constant shared constant shared constant constant shared constant shared constant

Memory Allocation NA NA NA AoS AoS SoA AoS AoS SoA AoS AoS

Throughput[Gbps] 5.0 34.4 35.2 26.9 23.9 23.4 25.3 25.0 17.1 2.9 2.6

shared memory and round keys on shared memory) achieved

only 13.4Gbps. We implemented another AES encoding

program which apply overlapping data transfer and AES

processing to exploit more performance. As a result, imple-

mentation applied overlapping to 16Bytes/thread(T-box on

shared and round keys on shared memory) implementation

archives 22.0Gbps. This implementation divided plaintext

data into 4 plaintext blocks and also AES encoding programs

worked four times independently. In case of this experience,

although dividing plaintext into 4 blocks achieves the best

performance, there is need to more discussions about over-

lapping data transfer and processing.

Finally, the best throughput achieved 28.39 fold speed up

compared with Core i7-920 2.66GHz CPU implementation

achieved 1.2Gbps.

VII. CONCLUSION

This paper presents the analysis about the effectiveness

for AES implementation from various conditions such as

parallel processing granularity, memory allocation and so

on.

There are over 10 times difference of performance by the

kind of best GPU implementation which achieved 35.2Gbps

throughput and 28.39 fold speed up compared with Core

i7-920 2.66GHz CPU implementation.

We found that such implementation granularity at

16Bytes/thread tended to be effective. Moreover, common

data table T-box and round keys allocating on shared mem-

ory achieves the best performance but round keys which

requires coherent accesses will be able to allocate constant

memory.

The best result of this paper 35.2Gbps encoding through-

put strongly alleged the potential of CUDA GPU for cryp-

tographic accelerator. As high end application, there is a

possibility for such as code breaker but we expect a small

accelerator for a block cipher accelerator because of GPU

equipped most of computers such as notebook PC too.

Additionally, we would like to apply our AES implemen-

tation methods to another common key block ciphers such

as MISTY.
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